Flying is a fascinating yet sometimes complex activity. I am convinced that at times you will have experienced the demanding requirements of multi-tasking in the single-pilot cockpit environment.

Several years of flying experience have enabled me to create and hone tools and techniques to simplify typical cockpit tasks.

In order to make these tools available to all pilots, a distribution platform 'Blind Spot Aviation' was founded.

This ruler has been designed to offer VFR pilots maximum support in the simplest way, during flight preparation and in flight.

Enjoy flying, as from now, even more!
Frank Verbruggen,
Founder
\qquad

USAGE TIPS
Slide the ruler between the dashboard and the wind shield lit will not scratch the wind shield as it is made of soft material) or place it in your kneeboard, within reach.

The back side of the ruler is printed in reverse so that the ruler can be turned around in the shortest way: by flipping it over from bottom to top.

For additional information \& support and the Pilot's Corner *, visit our website:
www.blindspot.be

BONUS:

Simplified VFR Navigation Form: Downloadable for free (PDF) at the website.

Blind Spot Aviation info@blindspot.be - www.blindspot.be © Blind Spot Belgium - 2009-2015 All rights reserved
Made \& Printed in Belgium

* Special fun suff for avaitors.

Blind Spot's Original Pilot's Ruler ${ }^{\odot}$

FEATURING

Front Side:

- DISTANCE MEASURING for scale 1/250 000
- DISTANCE MEASURING for scale 1/500 000
- DISTANCE MEASURING for scale 1/1 000000
- FLYING TIME (EET) table for ground speeds from 50 up to 180 knots
- INTEGRATED PROTRACTOR
- CALCULATION OF GROUND SPEED
- CALCULATION OF HEAD- or TAILWIND component Rear Side:
- VFR CRUISING LEVELS, Europe \& S-Europe
- ATC LIGHT SIGNALS
- SPECIAL TRANSPONDER CODES
- MORSE CODE
- EMERGENCY FREQUENCY
- LANDING CROSS WIND calculation

THE
 ALL-IN-ONE PILOT'S TOOL!

For Flight Planning
\&
Use during Flight

EXTRLEMELY SIMPLE \& FAST'

 T(O) USE FLEXIBLE
NO SUNLIGHTT

 REFLLECTION
NO BATTITERIES

NO KEYB(OARD INPU'T'

Fly safer and more relaxedl
As from now many navigation problems and in-flight tasks can be solved at a glance, in a matter of seconds.
This is what this tool was designed for.

USER GUIDE

Protractor: the integrated protractor is similar to the standard type, North is held up. >plot a line on the chart from actual position or point of departure (A) to point of destination (B); $>$ place the hole in the protractor over the point of departure (A) :
$>$ place the ruler horizontal and trace the plotted line on the protractor, or align your pencil from A to B ; > now read the track. (see example 1)

- if the the plotted line on the map is behind the ruler (blind zone) rotate the ruler $1 / 4$ turn to the left (place the ruler up) and now use the red numbers to read the track. (see example 2)

Distance Measuring, nautical miles, for:

- scale 1/250 000 - Terminal Area Charts;
- scale 1/500 000 - Sectional Charts (SEC);
- scale 1/1 000000 - World Aeronautical Charts (WAC): use upper SEC scale and multiply distance by 2

EET Table:

Example 1

- read out EET for given ground speed (GS) and distance. How to read the results?
e.g.: $1^{\prime} 43^{\prime \prime}=1$ minute 43 seconds $\mid 25^{\prime}=25$ minutes \mid 'th $40^{\prime}=1$ hour 40 minutes etc. (see website for more explanation concerning the rounding of the figures)
- distances not published: for example $65 \mathrm{~nm}=40+25 \mathrm{~nm}$, at GS $120 \mathrm{kts}: 20^{\prime}+12^{\prime}=32^{\prime}$ EET
- GS?: read out GS for measured flying time between two points with known distance.
- determine head or tailwind = difference between (known) TAS en GS (found as explained above).

```
Transponder Codes
    - common VFR code for Central Europe and International Special Codes
- in some countries VFR code can differ from the standard one, always
    consult the respective countries' AIP.
    - in controlled area you may be instructed by ATC to use another code.
More information on the website.
```

ATC Light Signals:

- the purpose of these signals is well known (lost radio communication) but probably
by few still known by heart.
\qquad
Cross Wind calculation:
>enter graph on the left at corresponding reported Runway Surface Wind Speed;
$>$ follow arc until intersecting with line corresponding to number of degrees crosswind (= wind direction minus runway direction, e.g. runway QFU: 250°, wind from 290° gives 290-250 $=040^{\circ}$ crosswind)
$>$ from this point go vertically to the bottom and read the Landing Cross Wind Speed. (See integrated example on the ruler).

